搜索内容

Python学习-基础函数!

Python学习-基础函数!

 

基本数据类型补充:


set 是一个无序且不重复的元素集合

  1. class set(object):
  2. """
  3. set() -> new empty set object
  4. set(iterable) -> new set object
  5. Build an unordered collection of unique elements.
  6. """
  7. def add(self, *args, **kwargs): # real signature unknown
  8. """
  9. Add an element to a set,添加元素
  10. This has no effect if the element is already present.
  11. """
  12. pass
  13. def clear(self, *args, **kwargs): # real signature unknown
  14. """ Remove all elements from this set. 清除内容"""
  15. pass
  16. def copy(self, *args, **kwargs): # real signature unknown
  17. """ Return a shallow copy of a set. 浅拷贝 """
  18. pass
  19. def difference(self, *args, **kwargs): # real signature unknown
  20. """
  21. Return the difference of two or more sets as a new set. A中存在,B中不存在
  22. (i.e. all elements that are in this set but not the others.)
  23. """
  24. pass
  25. def difference_update(self, *args, **kwargs): # real signature unknown
  26. """ Remove all elements of another set from this set. 从当前集合中删除和B中相同的元素"""
  27. pass
  28. def discard(self, *args, **kwargs): # real signature unknown
  29. """
  30. Remove an element from a set if it is a member.
  31. If the element is not a member, do nothing. 移除指定元素,不存在不保错
  32. """
  33. pass
  34. def intersection(self, *args, **kwargs): # real signature unknown
  35. """
  36. Return the intersection of two sets as a new set. 交集
  37. (i.e. all elements that are in both sets.)
  38. """
  39. pass
  40. def intersection_update(self, *args, **kwargs): # real signature unknown
  41. """ Update a set with the intersection of itself and another. 取交集并更更新到A中 """
  42. pass
  43. def isdisjoint(self, *args, **kwargs): # real signature unknown
  44. """ Return True if two sets have a null intersection. 如果没有交集,返回True,否则返回False"""
  45. pass
  46. def issubset(self, *args, **kwargs): # real signature unknown
  47. """ Report whether another set contains this set. 是否是子序列"""
  48. pass
  49. def issuperset(self, *args, **kwargs): # real signature unknown
  50. """ Report whether this set contains another set. 是否是父序列"""
  51. pass
  52. def pop(self, *args, **kwargs): # real signature unknown
  53. """
  54. Remove and return an arbitrary set element.
  55. Raises KeyError if the set is empty. 移除元素
  56. """
  57. pass
  58. def remove(self, *args, **kwargs): # real signature unknown
  59. """
  60. Remove an element from a set; it must be a member.
  61. If the element is not a member, raise a KeyError. 移除指定元素,不存在保错
  62. """
  63. pass
  64. def symmetric_difference(self, *args, **kwargs): # real signature unknown
  65. """
  66. Return the symmetric difference of two sets as a new set. 对称差集
  67. (i.e. all elements that are in exactly one of the sets.)
  68. """
  69. pass
  70. def symmetric_difference_update(self, *args, **kwargs): # real signature unknown
  71. """ Update a set with the symmetric difference of itself and another. 对称差集,并更新到a中 """
  72. pass
  73. def union(self, *args, **kwargs): # real signature unknown
  74. """
  75. Return the union of sets as a new set. 并集
  76. (i.e. all elements that are in either set.)
  77. """
  78. pass
  79. def update(self, *args, **kwargs): # real signature unknown
  80. """ Update a set with the union of itself and others. 更新 """
  81. pass

1:创建

  1. s = set()
  2. s = {11,22,33,55}

2:转换

  1. li = [11,22,33,44]
  2. tu = (11,22,33,44)
  3. st = ''
  4. s = set(li)

3:intersection , intersection_update方法

  1. a = {11,22,33,44}
  2. b = {22,66,77,88}
  3. ret = a.intersection(b)
  4. print(ret)

intersection取得两个集合中的交集元素,并将这些元素以一个新的集合返回给一个变量接收

  1. a = {11,22,33,44}
  2. b = {22,66,77,88}
  3. a.intersection_update(b)
  4. print(a)

intersection_update取得两个集合的交集元素,并更新a集合

4:isdisjoint , issubset , issuperset方法

  1. s = {11,22,33,44}
  2. b = {11,22,77,55}
  3. ret = s.isdisjoint(b)#有交集返回False,没有交集返回True
  4. print(ret)
  5. ## False

issubset判断是否为子集

  1. a = {11,22,33,44}
  2. b = {11,44}
  3. ret = b.issubset(a)
  4. print(ret)
  5. ##########################################
  6. True

issuperset判断是否为父集

  1. a = {11,22,33,44}
  2. b = {11,44}
  3. ret = a.issubset(b)
  4. print(ret)
  5. ##########################################
  6. False

5:discard , remove , pop

  1. s = {11,22,33,44}
  2. s.remove(11)
  3. print(s)
  4. s.discard(22)
  5. print(s)
  6. s.pop()
  7. print(s)

三者都能达到移除元素的效果,区别在于remove移除集合中不存在的元素时会报错,discard移除不存在的元素是不会报错,pop无法精确控制移除哪个元素,按其自身的规则随机移除元素,返回被移除的元素,可以使用变量接收其返回值

6:symmetric_difference取差集

  1. s = {11,22,33,44}
  2. b = {11,22,77,55}
  3. r1 = s.difference(b)
  4. r2 = b.difference(s)
  5. print(r1)
  6. print(r2)
  7. ret = s.symmetric_difference(b)
  8. print(ret)
  9. ## set([33, 44])
  10. ## set([77, 55])
  11. ## set([33, 44, 77, 55])

symmetric_difference返回两个集合中不是交集的元素

上面的代码中,将symmetric_difference换成symmetric_difference_update则表示将两个集合中不是交集的部分赋值给s

7:union , update方法

  1. s = {11,22,33,44}
  2. b = {11,22,77,55}
  3. ret = s.union(b)
  4. print(ret)
  5. ## set([33, 11, 44, 77, 22, 55])

union方法合并两个集合

  1. s = {11,22,33,44}
  2. b = {11,22,77,55}
  3. s.update(b)
  4. print(s)
  5. ## set([33, 11, 44, 77, 22, 55])

update方法更新s集合,将b集合中的元素添加到s集合中!update方法也可以传递一个列表,如:update([23,45,67])

练习题:有下面两个字典

要求:

1)两个字典中有相同键的,则将new_dict中的值更新到old_dict对应键的值

2)old_dict中存在的键且new_dict中没有的键,在old_dict中删除,并把new_dict中的键值更新到old_dict中

3)最后输出old_dict

  1. # 数据库中原有
  2. old_dict = {
  3. "#1":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 },
  4. "#2":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 },
  5. "#3":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 }
  6. }
  7. # cmdb 新汇报的数据
  8. new_dict = {
  9. "#1":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 800 },
  10. "#3":{ 'hostname':'c1', 'cpu_count': 2, 'mem_capicity': 80 },
  11. "#4":{ 'hostname':'c2', 'cpu_count': 2, 'mem_capicity': 80 }
  12. }
  1. old_keys = set(old_dict.keys())
  2. new_keys = set(new_dict.keys())
  3. #需要更新元素的键
  4. update_keys = old_keys.intersection(new_keys)
  5. print(update_keys)
  6. #需要删除元素的键
  7. del_keys = old_keys.difference(new_keys)
  8. #需要添加元素的键
  9. add_keys = new_keys.difference(old_keys)
  10. print(del_keys)
  11. print(add_keys)
  12. update_keys = list(update_keys)
  13. for i in update_keys :
  14. old_dict[i] = new_dict[i]
  15. del_keys = list(del_keys)
  16. for j in del_keys :
  17. del old_dict[j]
  18. for k in list(add_keys) :
  19. old_dict[k] = new_dict[k]
  20. print(old_dict)
  21. ########################################
  22. {'#3': {'hostname': 'c1', 'cpu_count': , 'mem_capicity': }, '#1': {'hostname': 'c1', 'cpu_count': , 'mem_capicity': }, '#4': {'hostname': 'c2', 'cpu_count': , 'mem_capicity': }}

答案

collections系列

一、计数器(counter)

Counter是对字典类型的补充,用于追踪值的出现次数。

ps:具备字典的所有功能 + 自己的功能

  1. c = Counter('abcdeabcdabcaba')
  2. print c
  3. 输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
  1. ########################################################################
  2. ### Counter
  3. ########################################################################
  4. class Counter(dict):
  5. '''Dict subclass for counting hashable items. Sometimes called a bag
  6. or multiset. Elements are stored as dictionary keys and their counts
  7. are stored as dictionary values.
  8. >>> c = Counter('abcdeabcdabcaba') # count elements from a string
  9. >>> c.most_common(3) # three most common elements
  10. [('a', 5), ('b', 4), ('c', 3)]
  11. >>> sorted(c) # list all unique elements
  12. ['a', 'b', 'c', 'd', 'e']
  13. >>> ''.join(sorted(c.elements())) # list elements with repetitions
  14. 'aaaaabbbbcccdde'
  15. >>> sum(c.values()) # total of all counts
  16. >>> c['a'] # count of letter 'a'
  17. >>> for elem in 'shazam': # update counts from an iterable
  18. ... c[elem] += 1 # by adding 1 to each element's count
  19. >>> c['a'] # now there are seven 'a'
  20. >>> del c['b'] # remove all 'b'
  21. >>> c['b'] # now there are zero 'b'
  22. >>> d = Counter('simsalabim') # make another counter
  23. >>> c.update(d) # add in the second counter
  24. >>> c['a'] # now there are nine 'a'
  25. >>> c.clear() # empty the counter
  26. >>> c
  27. Counter()
  28. Note: If a count is set to zero or reduced to zero, it will remain
  29. in the counter until the entry is deleted or the counter is cleared:
  30. >>> c = Counter('aaabbc')
  31. >>> c['b'] -= 2 # reduce the count of 'b' by two
  32. >>> c.most_common() # 'b' is still in, but its count is zero
  33. [('a', 3), ('c', 1), ('b', 0)]
  34. '''
  35. # References:
  36. # http://en.wikipedia.org/wiki/Multiset
  37. # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
  38. # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
  39. # http://code.activestate.com/recipes/259174/
  40. # Knuth, TAOCP Vol. II section 4.6.3
  41. def __init__(self, iterable=None, **kwds):
  42. '''Create a new, empty Counter object. And if given, count elements
  43. from an input iterable. Or, initialize the count from another mapping
  44. of elements to their counts.
  45. >>> c = Counter() # a new, empty counter
  46. >>> c = Counter('gallahad') # a new counter from an iterable
  47. >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
  48. >>> c = Counter(a=4, b=2) # a new counter from keyword args
  49. '''
  50. super(Counter, self).__init__()
  51. self.update(iterable, **kwds)
  52. def __missing__(self, key):
  53. """ 对于不存在的元素,返回计数器为0 """
  54. 'The count of elements not in the Counter is zero.'
  55. # Needed so that self[missing_item] does not raise KeyError
  56. return 0
  57. def most_common(self, n=None):
  58. """ 数量大于等n的所有元素和计数器 """
  59. '''List the n most common elements and their counts from the most
  60. common to the least. If n is None, then list all element counts.
  61. >>> Counter('abcdeabcdabcaba').most_common(3)
  62. [('a', 5), ('b', 4), ('c', 3)]
  63. '''
  64. # Emulate Bag.sortedByCount from Smalltalk
  65. if n is None:
  66. return sorted(self.iteritems(), key=_itemgetter(1), reverse=True)
  67. return _heapq.nlargest(n, self.iteritems(), key=_itemgetter(1))
  68. def elements(self):
  69. """ 计数器中的所有元素,注:此处非所有元素集合,而是包含所有元素集合的迭代器 """
  70. '''Iterator over elements repeating each as many times as its count.
  71. >>> c = Counter('ABCABC')
  72. >>> sorted(c.elements())
  73. ['A', 'A', 'B', 'B', 'C', 'C']
  74. # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
  75. >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
  76. >>> product = 1
  77. >>> for factor in prime_factors.elements(): # loop over factors
  78. ... product *= factor # and multiply them
  79. >>> product
  80. Note, if an element's count has been set to zero or is a negative
  81. number, elements() will ignore it.
  82. '''
  83. # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
  84. return _chain.from_iterable(_starmap(_repeat, self.iteritems()))
  85. # Override dict methods where necessary
  86. @classmethod
  87. def fromkeys(cls, iterable, v=None):
  88. # There is no equivalent method for counters because setting v=1
  89. # means that no element can have a count greater than one.
  90. raise NotImplementedError(
  91. 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
  92. def update(self, iterable=None, **kwds):
  93. """ 更新计数器,其实就是增加;如果原来没有,则新建,如果有则加一 """
  94. '''Like dict.update() but add counts instead of replacing them.
  95. Source can be an iterable, a dictionary, or another Counter instance.
  96. >>> c = Counter('which')
  97. >>> c.update('witch') # add elements from another iterable
  98. >>> d = Counter('watch')
  99. >>> c.update(d) # add elements from another counter
  100. >>> c['h'] # four 'h' in which, witch, and watch
  101. '''
  102. # The regular dict.update() operation makes no sense here because the
  103. # replace behavior results in the some of original untouched counts
  104. # being mixed-in with all of the other counts for a mismash that
  105. # doesn't have a straight-forward interpretation in most counting
  106. # contexts. Instead, we implement straight-addition. Both the inputs
  107. # and outputs are allowed to contain zero and negative counts.
  108. if iterable is not None:
  109. if isinstance(iterable, Mapping):
  110. if self:
  111. self_get = self.get
  112. for elem, count in iterable.iteritems():
  113. self[elem] = self_get(elem, 0) + count
  114. else:
  115. super(Counter, self).update(iterable) # fast path when counter is empty
  116. else:
  117. self_get = self.get
  118. for elem in iterable:
  119. self[elem] = self_get(elem, 0) + 1
  120. if kwds:
  121. self.update(kwds)
  122. def subtract(self, iterable=None, **kwds):
  123. """ 相减,原来的计数器中的每一个元素的数量减去后添加的元素的数量 """
  124. '''Like dict.update() but subtracts counts instead of replacing them.
  125. Counts can be reduced below zero. Both the inputs and outputs are
  126. allowed to contain zero and negative counts.
  127. Source can be an iterable, a dictionary, or another Counter instance.
  128. >>> c = Counter('which')
  129. >>> c.subtract('witch') # subtract elements from another iterable
  130. >>> c.subtract(Counter('watch')) # subtract elements from another counter
  131. >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
  132. >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
  133. -1
  134. '''
  135. if iterable is not None:
  136. self_get = self.get
  137. if isinstance(iterable, Mapping):
  138. for elem, count in iterable.items():
  139. self[elem] = self_get(elem, 0) - count
  140. else:
  141. for elem in iterable:
  142. self[elem] = self_get(elem, 0) - 1
  143. if kwds:
  144. self.subtract(kwds)
  145. def copy(self):
  146. """ 拷贝 """
  147. 'Return a shallow copy.'
  148. return self.__class__(self)
  149. def __reduce__(self):
  150. """ 返回一个元组(类型,元组) """
  151. return self.__class__, (dict(self),)
  152. def __delitem__(self, elem):
  153. """ 删除元素 """
  154. 'Like dict.__delitem__() but does not raise KeyError for missing values.'
  155. if elem in self:
  156. super(Counter, self).__delitem__(elem)
  157. def __repr__(self):
  158. if not self:
  159. return '%s()' % self.__class__.__name__
  160. items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
  161. return '%s({%s})' % (self.__class__.__name__, items)
  162. # Multiset-style mathematical operations discussed in:
  163. # Knuth TAOCP Volume II section 4.6.3 exercise 19
  164. # and at http://en.wikipedia.org/wiki/Multiset
  165. #
  166. # Outputs guaranteed to only include positive counts.
  167. #
  168. # To strip negative and zero counts, add-in an empty counter:
  169. # c += Counter()
  170. def __add__(self, other):
  171. '''Add counts from two counters.
  172. >>> Counter('abbb') + Counter('bcc')
  173. Counter({'b': 4, 'c': 2, 'a': 1})
  174. '''
  175. if not isinstance(other, Counter):
  176. return NotImplemented
  177. result = Counter()
  178. for elem, count in self.items():
  179. newcount = count + other[elem]
  180. if newcount > 0:
  181. result[elem] = newcount
  182. for elem, count in other.items():
  183. if elem not in self and count > 0:
  184. result[elem] = count
  185. return result
  186. def __sub__(self, other):
  187. ''' Subtract count, but keep only results with positive counts.
  188. >>> Counter('abbbc') - Counter('bccd')
  189. Counter({'b': 2, 'a': 1})
  190. '''
  191. if not isinstance(other, Counter):
  192. return NotImplemented
  193. result = Counter()
  194. for elem, count in self.items():
  195. newcount = count - other[elem]
  196. if newcount > 0:
  197. result[elem] = newcount
  198. for elem, count in other.items():
  199. if elem not in self and count < 0:
  200. result[elem] = 0 - count
  201. return result
  202. def __or__(self, other):
  203. '''Union is the maximum of value in either of the input counters.
  204. >>> Counter('abbb') | Counter('bcc')
  205. Counter({'b': 3, 'c': 2, 'a': 1})
  206. '''
  207. if not isinstance(other, Counter):
  208. return NotImplemented
  209. result = Counter()
  210. for elem, count in self.items():
  211. other_count = other[elem]
  212. newcount = other_count if count < other_count else count
  213. if newcount > 0:
  214. result[elem] = newcount
  215. for elem, count in other.items():
  216. if elem not in self and count > 0:
  217. result[elem] = count
  218. return result
  219. def __and__(self, other):
  220. ''' Intersection is the minimum of corresponding counts.
  221. >>> Counter('abbb') & Counter('bcc')
  222. Counter({'b': 1})
  223. '''
  224. if not isinstance(other, Counter):
  225. return NotImplemented
  226. result = Counter()
  227. for elem, count in self.items():
  228. other_count = other[elem]
  229. newcount = count if count < other_count else other_count
  230. if newcount > 0:
  231. result[elem] = newcount
  232. return result
  233. Counter

Counter

二、有序字典(orderedDict )

orderdDict是对字典类型的补充,他记住了字典元素添加的顺序

  1. class OrderedDict(dict):
  2. 'Dictionary that remembers insertion order'
  3. # An inherited dict maps keys to values.
  4. # The inherited dict provides __getitem__, __len__, __contains__, and get.
  5. # The remaining methods are order-aware.
  6. # Big-O running times for all methods are the same as regular dictionaries.
  7. # The internal self.__map dict maps keys to links in a doubly linked list.
  8. # The circular doubly linked list starts and ends with a sentinel element.
  9. # The sentinel element never gets deleted (this simplifies the algorithm).
  10. # Each link is stored as a list of length three: [PREV, NEXT, KEY].
  11. def __init__(self, *args, **kwds):
  12. '''Initialize an ordered dictionary. The signature is the same as
  13. regular dictionaries, but keyword arguments are not recommended because
  14. their insertion order is arbitrary.
  15. '''
  16. if len(args) > 1:
  17. raise TypeError('expected at most 1 arguments, got %d' % len(args))
  18. try:
  19. self.__root
  20. except AttributeError:
  21. self.__root = root = [] # sentinel node
  22. root[:] = [root, root, None]
  23. self.__map = {}
  24. self.__update(*args, **kwds)
  25. def __setitem__(self, key, value, dict_setitem=dict.__setitem__):
  26. 'od.__setitem__(i, y) <==> od[i]=y'
  27. # Setting a new item creates a new link at the end of the linked list,
  28. # and the inherited dictionary is updated with the new key/value pair.
  29. if key not in self:
  30. root = self.__root
  31. last = root[0]
  32. last[1] = root[0] = self.__map[key] = [last, root, key]
  33. return dict_setitem(self, key, value)
  34. def __delitem__(self, key, dict_delitem=dict.__delitem__):
  35. 'od.__delitem__(y) <==> del od[y]'
  36. # Deleting an existing item uses self.__map to find the link which gets
  37. # removed by updating the links in the predecessor and successor nodes.
  38. dict_delitem(self, key)
  39. link_prev, link_next, _ = self.__map.pop(key)
  40. link_prev[1] = link_next # update link_prev[NEXT]
  41. link_next[0] = link_prev # update link_next[PREV]
  42. def __iter__(self):
  43. 'od.__iter__() <==> iter(od)'
  44. # Traverse the linked list in order.
  45. root = self.__root
  46. curr = root[1] # start at the first node
  47. while curr is not root:
  48. yield curr[2] # yield the curr[KEY]
  49. curr = curr[1] # move to next node
  50. def __reversed__(self):
  51. 'od.__reversed__() <==> reversed(od)'
  52. # Traverse the linked list in reverse order.
  53. root = self.__root
  54. curr = root[0] # start at the last node
  55. while curr is not root:
  56. yield curr[2] # yield the curr[KEY]
  57. curr = curr[0] # move to previous node
  58. def clear(self):
  59. 'od.clear() -> None. Remove all items from od.'
  60. root = self.__root
  61. root[:] = [root, root, None]
  62. self.__map.clear()
  63. dict.clear(self)
  64. # -- the following methods do not depend on the internal structure --
  65. def keys(self):
  66. 'od.keys() -> list of keys in od'
  67. return list(self)
  68. def values(self):
  69. 'od.values() -> list of values in od'
  70. return [self[key] for key in self]
  71. def items(self):
  72. 'od.items() -> list of (key, value) pairs in od'
  73. return [(key, self[key]) for key in self]
  74. def iterkeys(self):
  75. 'od.iterkeys() -> an iterator over the keys in od'
  76. return iter(self)
  77. def itervalues(self):
  78. 'od.itervalues -> an iterator over the values in od'
  79. for k in self:
  80. yield self[k]
  81. def iteritems(self):
  82. 'od.iteritems -> an iterator over the (key, value) pairs in od'
  83. for k in self:
  84. yield (k, self[k])
  85. update = MutableMapping.update
  86. __update = update # let subclasses override update without breaking __init__
  87. __marker = object()
  88. def pop(self, key, default=__marker):
  89. '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
  90. value. If key is not found, d is returned if given, otherwise KeyError
  91. is raised.
  92. '''
  93. if key in self:
  94. result = self[key]
  95. del self[key]
  96. return result
  97. if default is self.__marker:
  98. raise KeyError(key)
  99. return default
  100. def setdefault(self, key, default=None):
  101. 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
  102. if key in self:
  103. return self[key]
  104. self[key] = default
  105. return default
  106. def popitem(self, last=True):
  107. '''od.popitem() -> (k, v), return and remove a (key, value) pair.
  108. Pairs are returned in LIFO order if last is true or FIFO order if false.
  109. '''
  110. if not self:
  111. raise KeyError('dictionary is empty')
  112. key = next(reversed(self) if last else iter(self))
  113. value = self.pop(key)
  114. return key, value
  115. def __repr__(self, _repr_running={}):
  116. 'od.__repr__() <==> repr(od)'
  117. call_key = id(self), _get_ident()
  118. if call_key in _repr_running:
  119. return '...'
  120. _repr_running[call_key] = 1
  121. try:
  122. if not self:
  123. return '%s()' % (self.__class__.__name__,)
  124. return '%s(%r)' % (self.__class__.__name__, self.items())
  125. finally:
  126. del _repr_running[call_key]
  127. def __reduce__(self):
  128. 'Return state information for pickling'
  129. items = [[k, self[k]] for k in self]
  130. inst_dict = vars(self).copy()
  131. for k in vars(OrderedDict()):
  132. inst_dict.pop(k, None)
  133. if inst_dict:
  134. return (self.__class__, (items,), inst_dict)
  135. return self.__class__, (items,)
  136. def copy(self):
  137. 'od.copy() -> a shallow copy of od'
  138. return self.__class__(self)
  139. @classmethod
  140. def fromkeys(cls, iterable, value=None):
  141. '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
  142. If not specified, the value defaults to None.
  143. '''
  144. self = cls()
  145. for key in iterable:
  146. self[key] = value
  147. return self
  148. def __eq__(self, other):
  149. '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
  150. while comparison to a regular mapping is order-insensitive.
  151. '''
  152. if isinstance(other, OrderedDict):
  153. return dict.__eq__(self, other) and all(_imap(_eq, self, other))
  154. return dict.__eq__(self, other)
  155. def __ne__(self, other):
  156. 'od.__ne__(y) <==> od!=y'
  157. return not self == other
  158. # -- the following methods support python 3.x style dictionary views --
  159. def viewkeys(self):
  160. "od.viewkeys() -> a set-like object providing a view on od's keys"
  161. return KeysView(self)
  162. def viewvalues(self):
  163. "od.viewvalues() -> an object providing a view on od's values"
  164. return ValuesView(self)
  165. def viewitems(self):
  166. "od.viewitems() -> a set-like object providing a view on od's items"
  167. return ItemsView(self)
  168. OrderedDict

OrderedDict

三、默认字典(defaultdict) 

defaultdict是对字典的类型的补充,他默认给字典的值设置了一个类型。

  1. class defaultdict(dict):
  2. """
  3. defaultdict(default_factory[, ...]) --> dict with default factory
  4. The default factory is called without arguments to produce
  5. a new value when a key is not present, in __getitem__ only.
  6. A defaultdict compares equal to a dict with the same items.
  7. All remaining arguments are treated the same as if they were
  8. passed to the dict constructor, including keyword arguments.
  9. """
  10. def copy(self): # real signature unknown; restored from __doc__
  11. """ D.copy() -> a shallow copy of D. """
  12. pass
  13. def __copy__(self, *args, **kwargs): # real signature unknown
  14. """ D.copy() -> a shallow copy of D. """
  15. pass
  16. def __getattribute__(self, name): # real signature unknown; restored from __doc__
  17. """ x.__getattribute__('name') <==> x.name """
  18. pass
  19. def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
  20. """
  21. defaultdict(default_factory[, ...]) --> dict with default factory
  22. The default factory is called without arguments to produce
  23. a new value when a key is not present, in __getitem__ only.
  24. A defaultdict compares equal to a dict with the same items.
  25. All remaining arguments are treated the same as if they were
  26. passed to the dict constructor, including keyword arguments.
  27. # (copied from class doc)
  28. """
  29. pass
  30. def __missing__(self, key): # real signature unknown; restored from __doc__
  31. """
  32. __missing__(key) # Called by __getitem__ for missing key; pseudo-code:
  33. if self.default_factory is None: raise KeyError((key,))
  34. self[key] = value = self.default_factory()
  35. return value
  36. """
  37. pass
  38. def __reduce__(self, *args, **kwargs): # real signature unknown
  39. """ Return state information for pickling. """
  40. pass
  41. def __repr__(self): # real signature unknown; restored from __doc__
  42. """ x.__repr__() <==> repr(x) """
  43. pass
  44. default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  45. """Factory for default value called by __missing__()."""
  46. defaultdict

defaultdict

使用方法:

  1. import collections
  2. dic = collections.defaultdict(list)
  3. dic['k1'].append('alext')
  4. print(dic)

练习:

  1. 有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。
  2. 即: {'k1': 大于66 , 'k2': 小于66}
  1. values = [11, 22, 33,44,55,66,77,88,99,90]
  2. my_dict = {}
  3. for value in values:
  4. if value>66:
  5. if my_dict.has_key('k1'):
  6. my_dict['k1'].append(value)
  7. else:
  8. my_dict['k1'] = [value]
  9. else:
  10. if my_dict.has_key('k2'):
  11. my_dict['k2'].append(value)
  12. else:
  13. my_dict['k2'] = [value]

原生字典

  1. from collections import defaultdict
  2. values = [11, 22, 33,44,55,66,77,88,99,90]
  3. my_dict = defaultdict(list)
  4. for value in values:
  5. if value>66:
  6. my_dict['k1'].append(value)
  7. else:
  8. my_dict['k2'].append(value)
  9. defaultdict字典解决方法
  10. 默认字典

默认字典

四、可命名元组(namedtuple) 

根据nametuple可以创建一个包含tuple所有功能以及其他功能的类型。

  1. import collections
  2. MytupleClass = collections.namedtuple('MytupleClass',['x','y','z'])
  3. obj = MytupleClass(11,33,44)
  4. print(obj.x)
  5. print(obj.y)
  6. print(obj.z)
  1. class Mytuple(__builtin__.tuple)
  2. | Mytuple(x, y)
  3. |
  4. | Method resolution order:
  5. | Mytuple
  6. | __builtin__.tuple
  7. | __builtin__.object
  8. |
  9. | Methods defined here:
  10. |
  11. | __getnewargs__(self)
  12. | Return self as a plain tuple. Used by copy and pickle.
  13. |
  14. | __getstate__(self)
  15. | Exclude the OrderedDict from pickling
  16. |
  17. | __repr__(self)
  18. | Return a nicely formatted representation string
  19. |
  20. | _asdict(self)
  21. | Return a new OrderedDict which maps field names to their values
  22. |
  23. | _replace(_self, **kwds)
  24. | Return a new Mytuple object replacing specified fields with new values
  25. |
  26. | ----------------------------------------------------------------------
  27. | Class methods defined here:
  28. |
  29. | _make(cls, iterable, new=<built-in method __new__ of type object>, len=<built-in function len>) from __builtin__.type
  30. | Make a new Mytuple object from a sequence or iterable
  31. |
  32. | ----------------------------------------------------------------------
  33. | Static methods defined here:
  34. |
  35. | __new__(_cls, x, y)
  36. | Create new instance of Mytuple(x, y)
  37. |
  38. | ----------------------------------------------------------------------
  39. | Data descriptors defined here:
  40. |
  41. | __dict__
  42. | Return a new OrderedDict which maps field names to their values
  43. |
  44. | x
  45. | Alias for field number 0
  46. |
  47. | y
  48. | Alias for field number 1
  49. |
  50. | ----------------------------------------------------------------------
  51. | Data and other attributes defined here:
  52. |
  53. | _fields = ('x', 'y')
  54. |
  55. | ----------------------------------------------------------------------
  56. | Methods inherited from __builtin__.tuple:
  57. |
  58. | __add__(...)
  59. | x.__add__(y) <==> x+y
  60. |
  61. | __contains__(...)
  62. | x.__contains__(y) <==> y in x
  63. |
  64. | __eq__(...)
  65. | x.__eq__(y) <==> x==y
  66. |
  67. | __ge__(...)
  68. | x.__ge__(y) <==> x>=y
  69. |
  70. | __getattribute__(...)
  71. | x.__getattribute__('name') <==> x.name
  72. |
  73. | __getitem__(...)
  74. | x.__getitem__(y) <==> x[y]
  75. |
  76. | __getslice__(...)
  77. | x.__getslice__(i, j) <==> x[i:j]
  78. |
  79. | Use of negative indices is not supported.
  80. |
  81. | __gt__(...)
  82. | x.__gt__(y) <==> x>y
  83. |
  84. | __hash__(...)
  85. | x.__hash__() <==> hash(x)
  86. |
  87. | __iter__(...)
  88. | x.__iter__() <==> iter(x)
  89. |
  90. | __le__(...)
  91. | x.__le__(y) <==> x<=y
  92. |
  93. | __len__(...)
  94. | x.__len__() <==> len(x)
  95. |
  96. | __lt__(...)
  97. | x.__lt__(y) <==> x<y
  98. |
  99. | __mul__(...)
  100. | x.__mul__(n) <==> x*n
  101. |
  102. | __ne__(...)
  103. | x.__ne__(y) <==> x!=y
  104. |
  105. | __rmul__(...)
  106. | x.__rmul__(n) <==> n*x
  107. |
  108. | __sizeof__(...)
  109. | T.__sizeof__() -- size of T in memory, in bytes
  110. |
  111. | count(...)
  112. | T.count(value) -> integer -- return number of occurrences of value
  113. |
  114. | index(...)
  115. | T.index(value, [start, [stop]]) -> integer -- return first index of value.
  116. | Raises ValueError if the value is not present.
  117. Mytuple

Mytuple

五、双向队列(deque)

一个线程安全的双向队列

  1. class deque(object):
  2. """
  3. deque([iterable[, maxlen]]) --> deque object
  4. Build an ordered collection with optimized access from its endpoints.
  5. """
  6. def append(self, *args, **kwargs): # real signature unknown
  7. """ Add an element to the right side of the deque. """
  8. pass
  9. def appendleft(self, *args, **kwargs): # real signature unknown
  10. """ Add an element to the left side of the deque. """
  11. pass
  12. def clear(self, *args, **kwargs): # real signature unknown
  13. """ Remove all elements from the deque. """
  14. pass
  15. def count(self, value): # real signature unknown; restored from __doc__
  16. """ D.count(value) -> integer -- return number of occurrences of value """
  17. return 0
  18. def extend(self, *args, **kwargs): # real signature unknown
  19. """ Extend the right side of the deque with elements from the iterable """
  20. pass
  21. def extendleft(self, *args, **kwargs): # real signature unknown
  22. """ Extend the left side of the deque with elements from the iterable """
  23. pass
  24. def pop(self, *args, **kwargs): # real signature unknown
  25. """ Remove and return the rightmost element. """
  26. pass
  27. def popleft(self, *args, **kwargs): # real signature unknown
  28. """ Remove and return the leftmost element. """
  29. pass
  30. def remove(self, value): # real signature unknown; restored from __doc__
  31. """ D.remove(value) -- remove first occurrence of value. """
  32. pass
  33. def reverse(self): # real signature unknown; restored from __doc__
  34. """ D.reverse() -- reverse *IN PLACE* """
  35. pass
  36. def rotate(self, *args, **kwargs): # real signature unknown
  37. """ Rotate the deque n steps to the right (default n=1). If n is negative, rotates left. """
  38. pass
  39. def __copy__(self, *args, **kwargs): # real signature unknown
  40. """ Return a shallow copy of a deque. """
  41. pass
  42. def __delitem__(self, y): # real signature unknown; restored from __doc__
  43. """ x.__delitem__(y) <==> del x[y] """
  44. pass
  45. def __eq__(self, y): # real signature unknown; restored from __doc__
  46. """ x.__eq__(y) <==> x==y """
  47. pass
  48. def __getattribute__(self, name): # real signature unknown; restored from __doc__
  49. """ x.__getattribute__('name') <==> x.name """
  50. pass
  51. def __getitem__(self, y): # real signature unknown; restored from __doc__
  52. """ x.__getitem__(y) <==> x[y] """
  53. pass
  54. def __ge__(self, y): # real signature unknown; restored from __doc__
  55. """ x.__ge__(y) <==> x>=y """
  56. pass
  57. def __gt__(self, y): # real signature unknown; restored from __doc__
  58. """ x.__gt__(y) <==> x>y """
  59. pass
  60. def __iadd__(self, y): # real signature unknown; restored from __doc__
  61. """ x.__iadd__(y) <==> x+=y """
  62. pass
  63. def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__
  64. """
  65. deque([iterable[, maxlen]]) --> deque object
  66. Build an ordered collection with optimized access from its endpoints.
  67. # (copied from class doc)
  68. """
  69. pass
  70. def __iter__(self): # real signature unknown; restored from __doc__
  71. """ x.__iter__() <==> iter(x) """
  72. pass
  73. def __len__(self): # real signature unknown; restored from __doc__
  74. """ x.__len__() <==> len(x) """
  75. pass
  76. def __le__(self, y): # real signature unknown; restored from __doc__
  77. """ x.__le__(y) <==> x<=y """
  78. pass
  79. def __lt__(self, y): # real signature unknown; restored from __doc__
  80. """ x.__lt__(y) <==> x<y """
  81. pass
  82. @staticmethod # known case of __new__
  83. def __new__(S, *more): # real signature unknown; restored from __doc__
  84. """ T.__new__(S, ...) -> a new object with type S, a subtype of T """
  85. pass
  86. def __ne__(self, y): # real signature unknown; restored from __doc__
  87. """ x.__ne__(y) <==> x!=y """
  88. pass
  89. def __reduce__(self, *args, **kwargs): # real signature unknown
  90. """ Return state information for pickling. """
  91. pass
  92. def __repr__(self): # real signature unknown; restored from __doc__
  93. """ x.__repr__() <==> repr(x) """
  94. pass
  95. def __reversed__(self): # real signature unknown; restored from __doc__
  96. """ D.__reversed__() -- return a reverse iterator over the deque """
  97. pass
  98. def __setitem__(self, i, y): # real signature unknown; restored from __doc__
  99. """ x.__setitem__(i, y) <==> x[i]=y """
  100. pass
  101. def __sizeof__(self): # real signature unknown; restored from __doc__
  102. """ D.__sizeof__() -- size of D in memory, in bytes """
  103. pass
  104. maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  105. """maximum size of a deque or None if unbounded"""
  106. __hash__ = None
  107. deque
  108. deque

deque

注:既然有双向队列,也有单项队列(先进先出 FIFO )

  1. class Queue:
  2. """Create a queue object with a given maximum size.
  3. If maxsize is <= 0, the queue size is infinite.
  4. """
  5. def __init__(self, maxsize=0):
  6. self.maxsize = maxsize
  7. self._init(maxsize)
  8. # mutex must be held whenever the queue is mutating. All methods
  9. # that acquire mutex must release it before returning. mutex
  10. # is shared between the three conditions, so acquiring and
  11. # releasing the conditions also acquires and releases mutex.
  12. self.mutex = _threading.Lock()
  13. # Notify not_empty whenever an item is added to the queue; a
  14. # thread waiting to get is notified then.
  15. self.not_empty = _threading.Condition(self.mutex)
  16. # Notify not_full whenever an item is removed from the queue;
  17. # a thread waiting to put is notified then.
  18. self.not_full = _threading.Condition(self.mutex)
  19. # Notify all_tasks_done whenever the number of unfinished tasks
  20. # drops to zero; thread waiting to join() is notified to resume
  21. self.all_tasks_done = _threading.Condition(self.mutex)
  22. self.unfinished_tasks = 0
  23. def task_done(self):
  24. """Indicate that a formerly enqueued task is complete.
  25. Used by Queue consumer threads. For each get() used to fetch a task,
  26. a subsequent call to task_done() tells the queue that the processing
  27. on the task is complete.
  28. If a join() is currently blocking, it will resume when all items
  29. have been processed (meaning that a task_done() call was received
  30. for every item that had been put() into the queue).
  31. Raises a ValueError if called more times than there were items
  32. placed in the queue.
  33. """
  34. self.all_tasks_done.acquire()
  35. try:
  36. unfinished = self.unfinished_tasks - 1
  37. if unfinished <= 0:
  38. if unfinished < 0:
  39. raise ValueError('task_done() called too many times')
  40. self.all_tasks_done.notify_all()
  41. self.unfinished_tasks = unfinished
  42. finally:
  43. self.all_tasks_done.release()
  44. def join(self):
  45. """Blocks until all items in the Queue have been gotten and processed.
  46. The count of unfinished tasks goes up whenever an item is added to the
  47. queue. The count goes down whenever a consumer thread calls task_done()
  48. to indicate the item was retrieved and all work on it is complete.
  49. When the count of unfinished tasks drops to zero, join() unblocks.
  50. """
  51. self.all_tasks_done.acquire()
  52. try:
  53. while self.unfinished_tasks:
  54. self.all_tasks_done.wait()
  55. finally:
  56. self.all_tasks_done.release()
  57. def qsize(self):
  58. """Return the approximate size of the queue (not reliable!)."""
  59. self.mutex.acquire()
  60. n = self._qsize()
  61. self.mutex.release()
  62. return n
  63. def empty(self):
  64. """Return True if the queue is empty, False otherwise (not reliable!)."""
  65. self.mutex.acquire()
  66. n = not self._qsize()
  67. self.mutex.release()
  68. return n
  69. def full(self):
  70. """Return True if the queue is full, False otherwise (not reliable!)."""
  71. self.mutex.acquire()
  72. n = 0 < self.maxsize == self._qsize()
  73. self.mutex.release()
  74. return n
  75. def put(self, item, block=True, timeout=None):
  76. """Put an item into the queue.
  77. If optional args 'block' is true and 'timeout' is None (the default),
  78. block if necessary until a free slot is available. If 'timeout' is
  79. a non-negative number, it blocks at most 'timeout' seconds and raises
  80. the Full exception if no free slot was available within that time.
  81. Otherwise ('block' is false), put an item on the queue if a free slot
  82. is immediately available, else raise the Full exception ('timeout'
  83. is ignored in that case).
  84. """
  85. self.not_full.acquire()
  86. try:
  87. if self.maxsize > 0:
  88. if not block:
  89. if self._qsize() == self.maxsize:
  90. raise Full
  91. elif timeout is None:
  92. while self._qsize() == self.maxsize:
  93. self.not_full.wait()
  94. elif timeout < 0:
  95. raise ValueError("'timeout' must be a non-negative number")
  96. else:
  97. endtime = _time() + timeout
  98. while self._qsize() == self.maxsize:
  99. remaining = endtime - _time()
  100. if remaining <= 0.0:
  101. raise Full
  102. self.not_full.wait(remaining)
  103. self._put(item)
  104. self.unfinished_tasks += 1
  105. self.not_empty.notify()
  106. finally:
  107. self.not_full.release()
  108. def put_nowait(self, item):
  109. """Put an item into the queue without blocking.
  110. Only enqueue the item if a free slot is immediately available.
  111. Otherwise raise the Full exception.
  112. """
  113. return self.put(item, False)
  114. def get(self, block=True, timeout=None):
  115. """Remove and return an item from the queue.
  116. If optional args 'block' is true and 'timeout' is None (the default),
  117. block if necessary until an item is available. If 'timeout' is
  118. a non-negative number, it blocks at most 'timeout' seconds and raises
  119. the Empty exception if no item was available within that time.
  120. Otherwise ('block' is false), return an item if one is immediately
  121. available, else raise the Empty exception ('timeout' is ignored
  122. in that case).
  123. """
  124. self.not_empty.acquire()
  125. try:
  126. if not block:
  127. if not self._qsize():
  128. raise Empty
  129. elif timeout is None:
  130. while not self._qsize():
  131. self.not_empty.wait()
  132. elif timeout < 0:
  133. raise ValueError("'timeout' must be a non-negative number")
  134. else:
  135. endtime = _time() + timeout
  136. while not self._qsize():
  137. remaining = endtime - _time()
  138. if remaining <= 0.0:
  139. raise Empty
  140. self.not_empty.wait(remaining)
  141. item = self._get()
  142. self.not_full.notify()
  143. return item
  144. finally:
  145. self.not_empty.release()
  146. def get_nowait(self):
  147. """Remove and return an item from the queue without blocking.
  148. Only get an item if one is immediately available. Otherwise
  149. raise the Empty exception.
  150. """
  151. return self.get(False)
  152. # Override these methods to implement other queue organizations
  153. # (e.g. stack or priority queue).
  154. # These will only be called with appropriate locks held
  155. # Initialize the queue representation
  156. def _init(self, maxsize):
  157. self.queue = deque()
  158. def _qsize(self, len=len):
  159. return len(self.queue)
  160. # Put a new item in the queue
  161. def _put(self, item):
  162. self.queue.append(item)
  163. # Get an item from the queue
  164. def _get(self):
  165. return self.queue.popleft()
  166. Queue.Queue

Queue.Queue

三元运算


三元运算(三目运算),是对简单的条件语句的缩写。

  1. # 书写格式
  2. result = 1 if 条件 else 2
  3. # 如果条件成立,那么将 “值1” 赋值给result变量,否则,将“值2”赋值给result变量
  1. a = 1
  2. name = 'poe' if a == 1 else 'jet'
  3. print(name)

深浅拷贝


一、数字和字符串

对于 数字 和 字符串 而言,赋值、浅拷贝和深拷贝无意义,因为其永远指向同一个内存地址。

  1. import copy
  2. # ######### 数字、字符串 #########
  3. n1 = 123
  4. # n1 = "i am alex age 10"
  5. print(id(n1))
  6. # ## 赋值 ##
  7. n2 = n1
  8. print(id(n2))
  9. # ## 浅拷贝 ##
  10. n2 = copy.copy(n1)
  11. print(id(n2))
  12. # ## 深拷贝 ##
  13. n3 = copy.deepcopy(n1)
  14. print(id(n3))

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTUuY25ibG9ncy5jb20vYmxvZy8xMDg5NTA3LzIwMTcwMS8xMDg5NTA3LTIwMTcwMTAzMTk0NzI4NTAzLTE2Mjc0MjE5MzIucG5n

二、其他基本数据类型

对于字典、元祖、列表 而言,进行赋值、浅拷贝和深拷贝时,其内存地址的变化是不同的。

1、赋值

赋值,只是创建一个变量,该变量指向原来内存地址,如:

  1. n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}
  2. n2 = n1

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTUuY25ibG9ncy5jb20vYmxvZy8xMDg5NTA3LzIwMTcwMS8xMDg5NTA3LTIwMTcwMTAzMTk0ODE2OTQxLTE3MjY5MDIyMzAucG5n

2、浅拷贝

浅拷贝,在内存中只额外创建第一层数据

  1. import copy
  2. n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}
  3. n3 = copy.copy(n1)

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTUuY25ibG9ncy5jb20vYmxvZy8xMDg5NTA3LzIwMTcwMS8xMDg5NTA3LTIwMTcwMTAzMTk0OTMyNDA5LTg0MTU4MDkzNy5wbmc

3、深拷贝

深拷贝,在内存中将所有的数据重新创建一份(排除最后一层,即:python内部对字符串和数字的优化)

  1. import copy
  2. n1 = {"k1": "wu", "k2": 123, "k3": ["alex", 456]}
  3. n4 = copy.deepcopy(n1)

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTUuY25ibG9ncy5jb20vYmxvZy8xMDg5NTA3LzIwMTcwMS8xMDg5NTA3LTIwMTcwMTAzMTk1MDMxOTA5LTEwODQ2MDc3NDYucG5n

函数


1:函数的定义

  1. def 函数名(参数):
  2. ...
  3. 函数体
  4. ...
  5. 返回值

函数的定义主要有如下要点:

def:表示函数的关键字
函数名:函数的名称,日后根据函数名调用函数
函数体:函数中进行一系列的逻辑计算,如:发送邮件、计算出 [11,22,38,888,2]中的最大数等...
参数:为函数体提供数据
返回值:当函数执行完毕后,可以给调用者返回数据。

2:返回值

函数是一个功能块,该功能到底执行成功与否,需要通过返回值来告知调用者。

以上要点中,比较重要有参数和返回值:

  1. def 发送短信():
  2. 发送短信的代码...
  3. if 发送成功:
  4. return True
  5. else:
  6. return False
  7. while True:
  8. # 每次执行发送短信函数,都会将返回值自动赋值给result
  9. # 之后,可以根据result来写日志,或重发等操作
  10. result = 发送短信()
  11. if result == False:
  12. 记录日志,短信发送失败...

3:参数

函数有三种不同的参数:

普通参数

  1. # ######### 定义函数 #########
  2. # name 叫做函数func的形式参数,简称:形参
  3. def func(name):
  4. print name
  5. # ######### 执行函数 #########
  6. # 'wupeiqi' 叫做函数func的实际参数,简称:实参
  7. func('poe')

默认参数

  1. def func(name, age = 18):
  2. print "%s:%s" %(name,age)
  3. # 指定参数
  4. func('poe', 19)
  5. # 使用默认参数
  6. func('gin')
  7. 注:默认参数需要放在参数列表最后

动态参数

  1. def f1(*a):
  2. print(a,type(a))
  3. f1(123,456,[1,2,3],'who')
  4. ## ((123, 456, [1, 2, 3], 'who'), <type 'tuple'>)
  1. def func(**kwargs):
  2. print args
  3. # 执行方式一
  4. func(name'poe',age=18)
  5. # 执行方式二
  6. li = {'name':'poe', age:18, 'gender':'male'}
  7. func(**li)
  1. def f1(*a,**b) :#一个星的参数必须在前,两个星的参数必须在后
  2. print(a,type(a))
  3. print(b,type(b))
  4. f1(11,22,33,k1=1234,k2=456)
  5. ## ((11, 22, 33), <type 'tuple'>)({'k2': 456, 'k1': 1234}, <type 'dict'>)

为动态参数传入列表,元组,字典:(注:这几种数据类型在函数传参的时候只有引用传递,没有值传递

  1. def f1(*args) :
  2. print(args,type(args))
  3. li = [1,2,3,4]
  4. f1(li)
  5. f1(*li)
  6. ## (([1, 2, 3, 4],), <type 'tuple'>)
  7. ## ((1, 2, 3, 4), <type 'tuple'>)
  1. def f2(**kwargs) :
  2. print(kwargs,type(kwargs))
  3. dic = {'k1':123,'k2':456}
  4. f2(k1 = dic)
  5. f2(**dic)
  6. ## ({'k1': {'k2': 456, 'k1': 123}}, <type 'dict'>)
  7. ## ({'k2': 456, 'k1': 123}, <type 'dict'>)

4:内置函数

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTUuY25ibG9ncy5jb20vYmxvZy8xMDg5NTA3LzIwMTcwMS8xMDg5NTA3LTIwMTcwMTAzMjAyOTAxMTEyLTE2NDE0MjkwODMucG5n

注:查看详细猛击这里

数据类型转换函数

  1. chr(i) 函数返回ASCII码对应的字符串
    1. print(chr(65))
    2. print(chr(66))
    3. print(chr(65)+chr(66))
    4. ##########################################
    5. A
    6. B
    7. AB
  2. complex(real[,imaginary]) 函数可把字符串或数字转换为复数
    1. print(complex("2+1j"))
    2. print(complex(""))
    3. print(complex(2,1))
    4. ##########################################
    5. (2+1j)
    6. (2+0j)
    7. (2+1j)
  3. float(x) 函数把一个数字或字符串转换成浮点数
    1. print(float(12))
    2. print(float(12.2))
    3. ##########################################
    4. 12.0
    5. 12.2
  4. long(x[,base]) 函数把数字和字符串转换成长整数,base为可选的基数
  5. list(x) 函数可将序列对象转换成列表
  6. min(x[,y,z...]) 函数返回给定参数的最小值,参数可以为序列
  7. max(x[,y,z...]) 函数返回给定参数的最大值,参数可以为序列
  8. ord(x) 函数返回一个字符串参数的ASCII码或Unicode值
    1. print(ord('a'))
    2. print(ord(u"A"))
    3. ##########################################
    4. 97
    5. 65
  9. str(obj) 函数把对象转换成可打印字符串
  10. tuple(x) 函数把序列对象转换成tuple
  11. type(x) 可以接收任何东西作为参数――并返回它的数据类型。整型、字符串、列表、字典、元组、函数、类、模块,甚至类型对象都可以作为参数被 type 函数接受

abs()函数:取绝对值

  1. print(abs(-1.2))

all()函数与any函数:

all(iterable):如果iterable的任意一个元素为0、''、False,则返回False,否则返回True

  1. print(all(['a','b','c','d']))#True
  2. print(all(['a','b','','d']))#False
  3. #注意:空元组、空列表返回值为True,这里要特别注意

any(iterable):如果iterable的所有元素都为0、''、False,则返回False,否则返回True

  1. print(any(['a','b','c','d']))#True
  2. print(any(['a',0,' ',False]))#True
  3. print(any([0,'',False]))#False

ascii(object) 函数:

返回一个可打印的对象字符串方式表示,如果是非ascii字符就会输出\x,\u或\U等字符来表示。与python2版本里的repr()是等效的函数。

  1. print(ascii(1))
  2. print(ascii('a'))
  3. print(ascii(123))
  4. print(ascii('中文'))#非ascii字符
  5. ##########################################
  6. 1
  7. 'a'
  8. 123
  9. '\u4e2d\u6587'

lambda表达式:

学习条件运算时,对于简单的 if else 语句,可以使用三元运算来表示,即:

  1. # 普通条件语句
  2. if 1 == 1:
  3. name = 'poe'
  4. else:
  5. name = 'bruce'
  6. # 三元运算
  7. name = 'poe' if 1 == 1 else 'bruce'

对于简单的函数,也存在一种简便的表示方式,即:lambda表达式

  1. # ###################### 普通函数 ######################
  2. # 定义函数(普通方式)
  3. def func(arg):
  4. return arg + 1
  5. # 执行函数
  6. result = func(123)
  7. # ###################### lambda ######################
  8. # 定义函数(lambda表达式)
  9. my_lambda = lambda arg : arg + 1
  10. # 执行函数
  11. result = my_lambda(123)

生成随机数:

  1. import random
  2. chars = ''
  3. for i in range(4) :
  4. rand_num = random.randrange(0,4)
  5. if rand_num == 3 or rand_num == 1:
  6. rand_digit = random.randrange(0,10)
  7. chars += str(rand_digit)
  8. else:
  9. rand_case = random.randrange(65,90)
  10. case = chr(rand_case)
  11. chars += case
  12. print(chars)

filter函数

filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list。

例1,要从一个list [1, 4, 6, 7, 9, 12, 17]中删除偶数,保留奇数,首先,要编写一个判断奇数的函数:

  1. # filter(fn,iterable)
  2. def is_odd(x) :
  3. return x % 2 == 1
  4. li = [1, 4, 6, 7, 9, 12, 17]
  5. result = filter(is_odd,li)
  6. print(result)
  7. ##########################################
  8. [1, 7, 9, 17]

例2:删除 列表中的None 或者空字符串

  1. li = ['test', None, '', 'str', ' ', 'END']
  2. def is_not_empty(s) :
  3. return s and len(s.strip()) > 0
  4. print(filter(is_not_empty,li))
  5. ##########################################
  6. ['test', 'str', 'END']

例3:请利用filter()过滤出1~100中平方根是整数的数,即结果应该是:[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

  1. import math
  2. def is_sqr(x) :
  3. return math.sqrt(x) % 1 == 0
  4. print filter(is_sqr,range(1,101))

以上三个函数都可以使用lambda表达式的写法来书写,如:

  1. result = filter(lambda x : x % 2 == 1,[1,4,6,9,12,7,17])
  2. print(result)

map()函数

map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回

例如,对于list [1, 2, 3, 4, 5, 6, 7, 8, 9]如果希望把list的每个元素都作平方,就可以用map()函数

  1. li = [1, 2, 3, 4, 5, 6, 7, 8, 9]
  2. print(li)
  3. def f(x) :
  4. return x*x
  5. r = list(map(f,[1, 2, 3, 4, 5, 6, 7, 8, 9]))
  6. print(r)

注:在python3里面,map()的返回值已经不再是list,而是iterators, 所以想要使用,只用将iterator 转换成list 即可, 比如 list(map()) 。

进制转换函数(以下四个函数可以实现各进制间的互相转换)

bin(x) :将整数x转换为二进制字符串,如果x不为Python中int类型,x必须包含方法__index__()并且返回值为integer

oct(x):将一个整数转换成8进制字符串。如果传入浮点数或者字符串均会报错

hex(x):将一个整数转换成16进制字符串。

int():

  • 传入数值时,调用其__int__()方法,浮点数将向下取整
    1. print(int(3))#
    2. print(int(3.6))#
  • 传入字符串时,默认以10进制进行转换
    1. print(int(''))#
  • 字符串中允许包含"+"、"-"号,但是加减号与数值间不能有空格,数值后、符号前可出现空格
    1. print(int('+36'))#
  • 传入字符串,并指定了进制,则按对应进制将字符串转换成10进制整数
    1. print(int('',2))#
    2. print(int('0o7',8))#
    3. print(int('0x15',16))#

open函数,该函数用于文件处理

操作文件时,一般需要经历如下步骤:

  1. 打开文件
  2. 操作文件

一:打开文件

  1. 文件句柄 = open('文件路径', '模式')

打开文件时,需要指定文件路径和以何等方式打开文件,打开后,即可获取该文件句柄,日后通过此文件句柄对该文件操作。

打开文件的模式有:

  • r ,只读模式【默认】
  • w,只写模式【不可读;不存在则创建;存在则清空内容;】
  • x, 只写模式【不可读;不存在则创建,存在则报错】
  • a, 追加模式【可读; 不存在则创建;存在则只追加内容;】
  1. f = open('test.log','r')
  2. data = f.read()
  3. f.close()
  4. print(data)

"+" 表示可以同时读写某个文件

  • r+, 读写【可读,可写】
  • w+,写读【可读,可写】
  • x+ ,写读【可读,可写】
  • a+, 写读【可读,可写】
  1. # r+ 模式
  2. f = open('test.log','r+',encoding='utf-8')
  3. print(f.tell())#打印当前指针所在的位置,此时为0
  4. data = f.read()
  5. print(data)
  6. print(f.tell())#此时当前指针在文件最末尾
  7. f.close()
  1. # w+模式:先清空文件,再写入文件,写入文件后才可以读文件
  2. f = open('test.log','w+',encoding="utf-8")
  3. f.write('python')#写完后,指针到了最后
  4. f.seek(0)#移动指针到开头
  5. data = f.read()
  6. f.close()
  7. print(data)
  1. # a+模式:打开的同时,指针已经到最后,
  2. # 写时,追加,指针到最后
  3. f = open('test.log','a+',encoding="utf-8")
  4. print(f.tell())#读取当前指针位置,此时指针已经到最后
  5. f.write('c++')
  6. print(f.tell())
  7. #此时要读文件必须把指针移动到文件开头
  8. f.seek(0)
  9. data = f.read();
  10. print(data)
  11. f.close()

"b"表示以字节的方式操作

  • rb 或 r+b
  • wb 或 w+b
  • xb 或 w+b
  • ab 或 a+b

注:以b方式打开时,读取到的内容是字节类型,写入时也需要提供字节类型

二:文件操作

  1. class file(object)
  2. def close(self): # real signature unknown; restored from __doc__
  3. 关闭文件
  4. """
  5. close() -> None or (perhaps) an integer. Close the file.
  6. Sets data attribute .closed to True. A closed file cannot be used for
  7. further I/O operations. close() may be called more than once without
  8. error. Some kinds of file objects (for example, opened by popen())
  9. may return an exit status upon closing.
  10. """
  11. def fileno(self): # real signature unknown; restored from __doc__
  12. 文件描述符
  13. """
  14. fileno() -> integer "file descriptor".
  15. This is needed for lower-level file interfaces, such os.read().
  16. """
  17. return 0
  18. def flush(self): # real signature unknown; restored from __doc__
  19. 刷新文件内部缓冲区
  20. """ flush() -> None. Flush the internal I/O buffer. """
  21. pass
  22. def isatty(self): # real signature unknown; restored from __doc__
  23. 判断文件是否是同意tty设备
  24. """ isatty() -> true or false. True if the file is connected to a tty device. """
  25. return False
  26. def next(self): # real signature unknown; restored from __doc__
  27. 获取下一行数据,不存在,则报错
  28. """ x.next() -> the next value, or raise StopIteration """
  29. pass
  30. def read(self, size=None): # real signature unknown; restored from __doc__
  31. 读取指定字节数据
  32. """
  33. read([size]) -> read at most size bytes, returned as a string.
  34. If the size argument is negative or omitted, read until EOF is reached.
  35. Notice that when in non-blocking mode, less data than what was requested
  36. may be returned, even if no size parameter was given.
  37. """
  38. pass
  39. def readinto(self): # real signature unknown; restored from __doc__
  40. 读取到缓冲区,不要用,将被遗弃
  41. """ readinto() -> Undocumented. Don't use this; it may go away. """
  42. pass
  43. def readline(self, size=None): # real signature unknown; restored from __doc__
  44. 仅读取一行数据
  45. """
  46. readline([size]) -> next line from the file, as a string.
  47. Retain newline. A non-negative size argument limits the maximum
  48. number of bytes to return (an incomplete line may be returned then).
  49. Return an empty string at EOF.
  50. """
  51. pass
  52. def readlines(self, size=None): # real signature unknown; restored from __doc__
  53. 读取所有数据,并根据换行保存值列表
  54. """
  55. readlines([size]) -> list of strings, each a line from the file.
  56. Call readline() repeatedly and return a list of the lines so read.
  57. The optional size argument, if given, is an approximate bound on the
  58. total number of bytes in the lines returned.
  59. """
  60. return []
  61. def seek(self, offset, whence=None): # real signature unknown; restored from __doc__
  62. 指定文件中指针位置
  63. """
  64. seek(offset[, whence]) -> None. Move to new file position.
  65. Argument offset is a byte count. Optional argument whence defaults to
  66. (offset from start of file, offset should be >= 0); other values are 1
  67. (move relative to current position, positive or negative), and 2 (move
  68. relative to end of file, usually negative, although many platforms allow
  69. seeking beyond the end of a file). If the file is opened in text mode,
  70. only offsets returned by tell() are legal. Use of other offsets causes
  71. undefined behavior.
  72. Note that not all file objects are seekable.
  73. """
  74. pass
  75. def tell(self): # real signature unknown; restored from __doc__
  76. 获取当前指针位置
  77. """ tell() -> current file position, an integer (may be a long integer). """
  78. pass
  79. def truncate(self, size=None): # real signature unknown; restored from __doc__
  80. 截断数据,仅保留指定之前数据
  81. """
  82. truncate([size]) -> None. Truncate the file to at most size bytes.
  83. Size defaults to the current file position, as returned by tell().
  84. """
  85. pass
  86. def write(self, p_str): # real signature unknown; restored from __doc__
  87. 写内容
  88. """
  89. write(str) -> None. Write string str to file.
  90. Note that due to buffering, flush() or close() may be needed before
  91. the file on disk reflects the data written.
  92. """
  93. pass
  94. def writelines(self, sequence_of_strings): # real signature unknown; restored from __doc__
  95. 将一个字符串列表写入文件
  96. """
  97. writelines(sequence_of_strings) -> None. Write the strings to the file.
  98. Note that newlines are not added. The sequence can be any iterable object
  99. producing strings. This is equivalent to calling write() for each string.
  100. """
  101. pass
  102. def xreadlines(self): # real signature unknown; restored from __doc__
  103. 可用于逐行读取文件,非全部
  104. """
  105. xreadlines() -> returns self.
  106. For backward compatibility. File objects now include the performance
  107. optimizations previously implemented in the xreadlines module.
  108. """
  109. pass
  110. 2.x

2.x版本

  1. class TextIOWrapper(_TextIOBase):
  2. """
  3. Character and line based layer over a BufferedIOBase object, buffer.
  4. encoding gives the name of the encoding that the stream will be
  5. decoded or encoded with. It defaults to locale.getpreferredencoding(False).
  6. errors determines the strictness of encoding and decoding (see
  7. help(codecs.Codec) or the documentation for codecs.register) and
  8. defaults to "strict".
  9. newline controls how line endings are handled. It can be None, '',
  10. '\n', '\r', and '\r\n'. It works as follows:
  11. * On input, if newline is None, universal newlines mode is
  12. enabled. Lines in the input can end in '\n', '\r', or '\r\n', and
  13. these are translated into '\n' before being returned to the
  14. caller. If it is '', universal newline mode is enabled, but line
  15. endings are returned to the caller untranslated. If it has any of
  16. the other legal values, input lines are only terminated by the given
  17. string, and the line ending is returned to the caller untranslated.
  18. * On output, if newline is None, any '\n' characters written are
  19. translated to the system default line separator, os.linesep. If
  20. newline is '' or '\n', no translation takes place. If newline is any
  21. of the other legal values, any '\n' characters written are translated
  22. to the given string.
  23. If line_buffering is True, a call to flush is implied when a call to
  24. write contains a newline character.
  25. """
  26. def close(self, *args, **kwargs): # real signature unknown
  27. 关闭文件
  28. pass
  29. def fileno(self, *args, **kwargs): # real signature unknown
  30. 文件描述符
  31. pass
  32. def flush(self, *args, **kwargs): # real signature unknown
  33. 刷新文件内部缓冲区
  34. pass
  35. def isatty(self, *args, **kwargs): # real signature unknown
  36. 判断文件是否是同意tty设备
  37. pass
  38. def read(self, *args, **kwargs): # real signature unknown
  39. 读取指定字节数据
  40. pass
  41. def readable(self, *args, **kwargs): # real signature unknown
  42. 是否可读
  43. pass
  44. def readline(self, *args, **kwargs): # real signature unknown
  45. 仅读取一行数据
  46. pass
  47. def seek(self, *args, **kwargs): # real signature unknown
  48. 指定文件中指针位置
  49. pass
  50. def seekable(self, *args, **kwargs): # real signature unknown
  51. 指针是否可操作
  52. pass
  53. def tell(self, *args, **kwargs): # real signature unknown
  54. 获取指针位置
  55. pass
  56. def truncate(self, *args, **kwargs): # real signature unknown
  57. 截断数据,仅保留指定之前数据
  58. pass
  59. def writable(self, *args, **kwargs): # real signature unknown
  60. 是否可写
  61. pass
  62. def write(self, *args, **kwargs): # real signature unknown
  63. 写内容
  64. pass
  65. def __getstate__(self, *args, **kwargs): # real signature unknown
  66. pass
  67. def __init__(self, *args, **kwargs): # real signature unknown
  68. pass
  69. @staticmethod # known case of __new__
  70. def __new__(*args, **kwargs): # real signature unknown
  71. """ Create and return a new object. See help(type) for accurate signature. """
  72. pass
  73. def __next__(self, *args, **kwargs): # real signature unknown
  74. """ Implement next(self). """
  75. pass
  76. def __repr__(self, *args, **kwargs): # real signature unknown
  77. """ Return repr(self). """
  78. pass
  79. buffer = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  80. closed = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  81. encoding = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  82. errors = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  83. line_buffering = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  84. name = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  85. newlines = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  86. _CHUNK_SIZE = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  87. _finalizing = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
  88. 3.x

3.x版本

三:管理上下文

为了避免打开文件后忘记关闭,可以通过管理上下文,即:

  1. with open('log','r') as f:
  2. ...

如此方式,当with代码块执行完毕时,内部会自动关闭并释放文件资源。

在Python 2.7 及以后,with又支持同时对多个文件的上下文进行管理,即:

  1. with open('log1') as obj1, open('log2') as obj2:
  2. pass

可使用此方法对一个文件进行读操作,同时把数据又写入到另一个打开的文件中!

read()、readline() 和 readlines()

每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。

.readline() 和 .readlines() 非常相似。它们都在类似于以下的结构中使用:

  1. fh = open('c:\\autoexec.bat')
  2. for line in fh.readlines():
  3. print line

.readline() 和 .readlines() 之间的差异是后者一次读取整个文件,象 .read() 一样。.readlines() 自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for ... in ... 结构进行处理。另一方面,.readline() 每次只读取一行,通常比 .readlines() 慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用 .readline()。

练习题:用户名与密码的验证

首先新建一个文件,这里为test.log文件,内容为两行如下:

  1. admin$123
  2. ginvip$123456

1:让用户选择1或2,1为登录,2为注册

2:如果用户选择1,用户输入用户名与密码,然后与test.log文件中的用户名与密码进行验证,验证成功输出“登录成功”,否则“登录失败”

3:如果用户选择2,让用户输入用户名与密码,并与test.log文件中的用户名验证,如果test.log中用户名已经存在,则输出“该用户名已经存在”,否则将用户输入的用户与密码以上面test.log文件中的形式写入test.log文件中

  1. def check_user(user) :
  2. with open('test.log','r',encoding='utf-8') as f :
  3. for line in f :
  4. user_list = line.strip()
  5. user_list = user_list.split('$')
  6. if user == user_list[0] :
  7. return True
  8. return False
  9. def register(user,pwd) :
  10. with open('test.log','a',encoding='utf-8') as f :
  11. user_info = '\n' + user + '$' + pwd
  12. if f.write(user_info) :
  13. return True
  14. return False
  15. def login(user,pwd) :
  16. with open('test.log','r',encoding='utf-8') as f :
  17. for line in f:
  18. user_list = line.strip()
  19. user_list = user_list.split('$')
  20. if user == user_list[0] and pwd == user_list[1]:
  21. return True
  22. return False
  23. def main() :
  24. print('welcome to my website')
  25. choice = input('1:login 2:register')
  26. if choice == '':
  27. user = input('input username :')
  28. pwd = input('input password : ')
  29. if check_user(user) :
  30. print('the username is exist')
  31. else:
  32. if register(user,pwd) :
  33. print('register success')
  34. else:
  35. print('register failed')
  36. elif choice == '':
  37. user = input('input username :')
  38. pwd = input('input password : ')
  39. if login(user,pwd) :
  40. print('login success')
  41. else:
  42. print('login failed')
  43. main()

冒泡排序


冒泡排序的原理:

L3Byb3h5L2h0dHBzL2ltYWdlczIwMTUuY25ibG9ncy5jb20vYmxvZy8xMDg5NTA3LzIwMTcwMS8xMDg5NTA3LTIwMTcwMTA1MTczNzMxNzY5LTExOTM1NTA4NjkucG5n

  1. def Bubble_sort(args) :
  2. for i in range(len(args)-1) :
  3. for j in range(len(args) -1):
  4. if args[j] > args[j+1]:
  5. temp = args[j]
  6. args[j] = args[j+1]
  7. args[j+1] = temp
  8. return args
  9. li = [33,2,10,1,9,3,8]
  10. print(Bubble_sort(li))

练习题

1、简述普通参数、指定参数、默认参数、动态参数的区别

2、写函数,计算传入字符串中【数字】、【字母】、【空格] 以及 【其他】的个数

  1. digit = 0
  2. case = 0
  3. space = 0
  4. other = 0
  5. def func2(s) :
  6. global digit,case,space,other
  7. if not isinstance(s,basestring) :
  8. print('the data type wrong!')
  9. return False
  10. for i in s :
  11. if i.isdigit() :
  12. digit += 1
  13. elif i.isalpha() :
  14. case += 1
  15. elif i.isspace() :
  16. space += 1
  17. else:
  18. other += 1
  19. s = 'I love python , is num 1 , o_k'
  20. a = [1,2,3]
  21. func2(s)
  22. print(digit)
  23. print(case)
  24. print(space)
  25. print(other)
  26. ########################################
  27. 1
  28. 18
  29. 8
  30. 3
  31. 问题:判断是不是字符串后直接退出函数,而不执行下面的代码?

第2题答案

3、写函数,判断用户传入的对象(字符串、列表、元组)长度是否大于5。

  1. def func3(v) :
  2. if len(v) > 5 :
  3. return True
  4. else:
  5. return False
  6. a = 'I love python , is num 1 , o_k'
  7. l = [1,2,3]
  8. t = (5,7,9,10,45,10)
  9. print(func3(t))

第三题答案

4、写函数,检查用户传入的对象(字符串、列表、元组)的每一个元素是否含有空内容。

5、写函数,检查传入列表的长度,如果大于2,那么仅保留前两个长度的内容,并将新内容返回给调用者。

  1. def func5(lis) :
  2. if len(lis) > 2 :
  3. return lis[0:2]
  4. else :
  5. return False
  6. li = [1,2,3]
  7. print(func5(li))
  8. ##########################################
  9. [1, 2]

第五题答案

6、写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者。

  1. def func6(lis) :
  2. new_lis = []
  3. for k in range(len(lis)) :
  4. if k % 2 == 1 :
  5. new_lis.append(lis[k])
  6. return new_lis
  7. li = [1,2,3,8,10,44,77]
  8. tu = ('poe','andy','jet','bruce','jacky')
  9. print(func6(tu))
  10. ##########################################
  11. ['andy', 'bruce']

第六题答案

7、写函数,检查传入字典的每一个value的长度,如果大于2,那么仅保留前两个长度的内容,并将新内容返回给调用者。

  1. dic = {"k1": "v1v1", "k2": [,,,]}
  2. PS:字典中的value只能是字符串或列表
  1. def func7(d) :
  2. v = d.values()
  3. li = []
  4. for i in v :
  5. if len(i) > 2:
  6. li.append(i[0:2])
  7. return li
  8. print(func7(dic))
  9. ##########################################
  10. [[11, 22], 'v1']

第七题答案

8、写函数,利用递归获取斐波那契数列中的第 10 个数,并将该值返回给调用者

  1. def fabonacci(n) :
  2. if n == 0 :
  3. return 0
  4. elif n == 1:
  5. return 1
  6. else:
  7. return fabonacci(n-1) + fabonacci(n-2)
  8. print(fabonacci(10))

 

学习资料见知识星球。

以上就是今天要分享的技巧,你学会了吗?若有什么问题,欢迎在下方留言。

快来试试吧,小琥 my21ke007。获取 1000个免费 Excel模板福利​​​​!

更多技巧, www.excelbook.cn

欢迎 加入 零售创新 知识星球,知识星球主要以数据分析、报告分享、数据工具讨论为主;

​​Win10系统关闭提示音的办法!

你将获得:

1、价值上万元的专业的PPT报告模板。

2、专业案例分析和解读笔记。

3、实用的Excel、Word、PPT技巧。

4、VIP讨论群,共享资源。

5、优惠的会员商品。

6、一次付费只需99元,即可下载本站文章涉及的文件和软件。

文章版权声明 1、本网站名称:Excelbook
2、本站永久网址:http://www.excelbook.cn
3、本网站的文章部分内容可能来源于网络,仅供大家学习与参考,如有侵权,请联系站长王小琥进行删除处理。
4、本站一切资源不代表本站立场,并不代表本站赞同其观点和对其真实性负责。
5、本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报。
6、本站资源大多存储在云盘,如发现链接失效,请联系我们我们会第一时间更新。

THE END
分享
二维码
< <上一篇
下一篇>>
发表评论

共有 0 条评论

沙发空余