2022年数据分析师面试回答,欢迎增加题目!

2022年数据分析师面试回答,欢迎增加题目!

1ce80a912d07ebb9ae63e5f701691de177b0dae5

数据分析师大多是支撑运营和决策的,但是大多都是提供数据,分析的较少。我说的分析是给出意见的分析。近期,我也在招聘数据分析师,遇到一些问题,来面试的朋友,要么就是工具的使用者,业务非常不熟悉。要么是就是链条太短,只是做网站端和销售端,对供应链、客服等非常不熟悉。

 

这个题目就是开放的问一个销售问题,看分析师如何给出相关的意见或者建议。当然这不是分析范畴,但是我觉得分析师既然是做运营支撑、甚至决策,那么一些基础的销售理念是应该有的。

 

题目:100斤苹果怎么卖,可以卖的钱又多,卖的又快?

开题:此题目意在说如何从商品的角度去考虑如何销售的问题,传统的销售方式就是经典的4p理论。渠道,商品,价格,促销。而此问题意在从商品,价格,促销的角度去问面试者问题。

题注:

1. 如果回答者答的问题说的过多,比如说渠道如何做,如果做售后,如何二次营销,范围就扩大了。

2. 如果回答者的回答过于泛,或者理论的东西比较多,或者听着非常正确而不给出解决方案,那不适合一线分析师。

上面两项是减分项。

刀刀的解答:

1、渠道是重要

用户考虑暂且放在渠道里,因为用户必须依赖渠道实现链接。但就此问题来说,有点跑题,问的是卖苹果,用户考虑一般先考虑需求和消费场景,所以不分享渠道的做法。

2、商品自己分堆

最简单,一堆贵,一堆便宜。苹果不分拣。卖个差不多再重分,46开分。

解读:利用价格做出价格歧视的感念,同时告诉消费者4的商品比较好卖,这样一个明确的指向。

3、商品拆分

按好坏分堆,好苹果贵30%。其余的分两堆,一般的常规卖,最差的贵50%,并贴上标签如涩苹果之类。

解读:劣质商品只是品质不好,不是不能卖高价,关键是你要告诉别人这是稀缺的。真实说明商品特征,不要做多,好的商品还是要高价的,稀缺商品要更贵。一般的商品就这样买。但是注意结合第四条。

4、时间因素

一般早上要比晚上贵,水果尽量当天卖完,所以在晚上8点后开始半价卖。

解读:快和多都是必须的,水果隔夜很多都会坏。晚上8点是大家出来遛弯的时候,可以做清仓了。不留呆滞库存是关键,高周转是关键。手里最好留的是钞票,而不是货物。

5、地点

这个本来不想说,还是说一下,火车站和汽车站绝对卖不出去,摊位没有。最重要的是你见过这种地方卖水果的销售有好的么?好地方在地铁口,菜市口,学校门口。

解读:人流多并不代表需求好,菜市场门口绝对比火车站好。为什么,火车站贵这是大家都知道的,再者,谁没事到火车站去买水果啊。菜市场还是做长久生意的地方,学校门口,地铁口大家多观察就知道了。

商品这个东西可以玩的很多。留几句话:

不要卖货源不稳定的某类商品。

坚决下架无法销售占位置的商品。

主推非标准品。

流行品一定是打折卖的。

 

数据分析师常见的面试问题集锦

 

随着大数据概念的火热,数据科学家这一职位应时而出,那么成为数据科学家要满足什么条件?或许我们可以从国外的数据科学家面试问题中得到一些参考,下面是77个关于数据分析或者数据科学家招聘的时候会常会的几个问题,供各位同行参考。

1、你处理过的最大的数据量?你是如何处理他们的?处理的结果。

2、告诉我二个分析或者计算机科学相关项目?你是如何对其结果进行衡量的?

3、什么是:提升值、关键绩效指标、强壮性、模型按合度、实验设计、2/8原则?

4、什么是:协同过滤、n-grams, map reduce、余弦距离?

5、如何让一个网络爬虫速度更快、抽取更好的信息以及更好总结数据从而得到一干净的数据库?

6、如何设计一个解决抄袭的方案?

7、如何检验一个个人支付账户都多个人使用?

8、点击流数据应该是实时处理?为什么?哪部分应该实时处理?

9、你认为哪个更好:是好的数据还是好模型?同时你是如何定义“好”?存在所有情况下通用的模型吗?有你没有知道一些模型的`定义并不是那么好?

10、什么是概率合并(AKA模糊融合)?使用SQL处理还是其它语言方便?对于处理半结构化的数据你会选择使用哪种语言?

11、你是如何处理缺少数据的?你推荐使用什么样的处理技术?

12、你最喜欢的编程语言是什么?为什么?

13、对于你喜欢的统计软件告诉你喜欢的与不喜欢的3个理由。

14、SAS, R, Python, Perl语言的区别是?

15、什么是大数据的方法论?

16、你参与过数据库与数据模型的设计吗?

17、你是否参与过仪表盘的设计及指标选择?你对于商业智能和报表工具有什么想法?

18、你喜欢TD数据库的什么特征?

19、如何你打算发100万的营销活动邮件。你怎么去优化发送?你怎么优化反应率?能把这二个优化份开吗?

20、如果有几个客户查询ORACLE数据库的效率很低。为什么?你做什么可以提高速度10倍以上,同时可以更好处理大数量输出?

21、如何把非结构化的数据转换成结构化的数据?这是否真的有必要做这样的转换?把数据存成平面文__件是否比存成关系数据库更好?

22、什么是哈希表碰撞攻击?怎么避免?发生的频率是多少?

23、如何判别mapreduce过程有好的负载均衡?什么是负载均衡?

24、请举例说明mapreduce是如何工作的?在什么应用场景下工作的很好?云的安全问题有哪些?

25、(在内存满足的情况下)你认为是100个小的哈希表好还是一个大的哈希表,对于内在或者运行速度来说?对于数据库分析的评价?

26、为什么朴素贝叶斯差?你如何使用朴素贝叶斯来改进爬虫检验算法?

27、你处理过白名单吗?主要的规则?

28、什么是星型模型?什么是查询表?

29、你可以使用excel建立逻辑回归模型吗?如何可以,说明一下建立过程?

 

学习资料见知识星球。

以上就是今天要分享的技巧,你学会了吗?若有什么问题,欢迎在下方留言。

快来试试吧,小琥 my21ke007。获取 1000个免费 Excel模板福利​​​​!

更多技巧, www.excelbook.cn

欢迎 加入 零售创新 知识星球,知识星球主要以数据分析、报告分享、数据工具讨论为主;

2022021703525891-4

你将获得:

1、价值上万元的专业的PPT报告模板。

2、专业案例分析和解读笔记。

3、实用的Excel、Word、PPT技巧。

4、VIP讨论群,共享资源。

5、优惠的会员商品。

6、一次付费只需99元,即可下载本站文章涉及的文件和软件。

文章版权声明 1、本网站名称:Excelbook
2、本站永久网址:http://www.excelbook.cn
3、本网站的文章部分内容可能来源于网络,仅供大家学习与参考,如有侵权,请联系站长王小琥进行删除处理。
4、本站一切资源不代表本站立场,并不代表本站赞同其观点和对其真实性负责。
5、本站一律禁止以任何方式发布或转载任何违法的相关信息,访客发现请向站长举报。
6、本站资源大多存储在云盘,如发现链接失效,请联系我们我们会第一时间更新。

THE END
分享
二维码
< <上一篇
下一篇>>