专业报告,达摩院2023十大科技趋势发布,生成式AI将进入应用爆发期!
专业报告,达摩院2023十大科技趋势发布,生成式AI将进入应用爆发期!
大数据文摘出品
1月11日,达摩院2023十大科技趋势发布,生成式AI、Chiplet模块化设计封装、全新云计算体系架构等技术入选。达摩院认为,全球科技日趋显现出交叉融合发展的新态势,尤其在信息与通信技术(ICT)领域酝酿的新裂变,将为科技产业革新注入动力。
颠覆性的科技突破也许百年才得一遇,持续性的迭代创新则以日进一寸的累积改变着日常生活。进入2023年,达摩院预测,基于技术迭代与产业应用的融合创新,将驱动AI、云计算、芯片等领域实现阶段性跃迁。
AI正在加速奔向通用人工智能。多模态预训练大模型将实现图像、文本、音频等的统一知识表示,成为人工智能基础设施;生成式AI将迎来应用大爆发,极大推动数字化内容的生产与创造。人工智能诞生数十年,人类对“通用AI”的想象从未如此具体。
云计算始终是数字时代的技术创新中心:基于云定义的可预期网络技术,将从数据中心的局域应用走向全网推广;因云而生的云原生安全技术,则将推动平台化、智能化的新型安全体系的成形;云也在重新定义计算体系架构,从以CPU为中心的传统架构,向以云基础设施处理器 (CIPU)为中心的全新体系架构演进。未来,由云定义的软硬一体化,将实现系统级的深度融合。
芯片领域在算力需求暴涨、摩尔定律放缓的夹击下寻求突围,达摩院预测,存算一体和Chiplet模块化设计封装将有长足进展:基于SRAM、NOR Flash等成熟存储器的存内计算有望在智能家居、可穿戴设备等场景实现规模化商用;Chiplet互联标准的逐渐统一将重构芯片研发流程。
基础技术的迭代演进必将催生新场景和新产业,今年最被达摩院看好的趋势有计算光学成像、数字孪生城市、双引擎智能决策等。
计算光学成像技术有望突破传统光学的物理极限,帮助人类触及“见所未见”的事物;智慧城市完成了精准映射、生成渲染、仿真推演等关键技术的全面突破,将从单一场景演进至大规模城市数字孪生,辅助人类更“全知”地认识和管理城市;智能决策系统实现了运筹优化和机器学习的联合驱动,将为人类在电网调度、港口吞吐管理、机场停机安排等实时变化的复杂难题上,提供更有价值的优化答案。
据悉,达摩院2023十大科技趋势采用“巴斯德象限”研究思路,基于论文和专利的大数据“定量发散”,对产、学、研、用领域近百位专家深度访谈进行“定性收敛”,再从学术创新、技术突破、产业落地、市场需求等维度综合评估,力求“致广大而尽精微”,最后遴选出十大趋势。
达摩院认为,AI正在加速奔向通用人工智能。生成式AI将迎来应用大爆发,极大推动数字化内容的生产与创造;多模态预训练大模型将实现图像、文本、音频等的统一知识表示,成为人工智能基础设施。人工智能诞生数十年,人类对“通用AI”的想象从未如此具体。
趋势解读一:生成式AI
生成式AI使用各种机器学习算法,从数据中学习要素,使机器能够创建全新的数字视频、图像、文本、音频或代码等内容。它创建出的内容与训练数据保持相似,而非复制。它的发展得益于近年来大模型在基础研究尤其是深度学习上的突破,真实数据的积累和计算成本的下降。在过去的这一年,生成式AI将人工智能的价值聚焦到“创造”二字,这标志着人工智能开始具备定义和呈现新事物的能力。过去一年,生成式AI的进展主要体现在如下领域:
图像生成领域的进展来自扩散模型(Diffusion model)的应用,以DALL·E2、Stable Diffusion为代表。扩散模型是一种从噪声中生成图像的深度学习技术。扩散模型技术的背后,是更精准理解人类语义的预训练模型、以及文本与图像统一表示模型(CLIP)的支撑。它的出现,让图像生成变得更具想象力。
自然语言处理(NLP)领域的进展来自于基于GPT3.5的ChatGPT。这是一种基于互联网可用数据训练的文本生成深度学习模型,用于问答、文本摘要生成、机器翻译、分类、代码生成和对话AI。得益于文本和代码相结合的预训练大模型的发展,ChatGPT引入了人工标注数据和强化学习(RLHF)来进行持续训练和优化。加入强化学习后,大模型能够理解人类的指令以及背后的含义,根据人类反馈来判断答案的质量,给出可解释的答案,并对于不合适的问题给出合理的回复,形成一个可迭代反馈的闭环。
代码生成领域的进展来自代码生成系统AlphaCode和Copilot。2022年2月,Deepmind推出了AlphaCode。它是一个可以自主编程的系统,在Codeforces举办的编程竞赛中,超过了47%的人类工程师。这标志着AI代码生成系统,首次在编程竞赛中,达到了具有竞争力的水平。基于开源代码训练的Copilot开始商业化,作为订阅服务提供给开发者,用户可以通过使用Copilot自动补全代码。Copilot作为一个基于大型语言模型的系统,尽管在多数情况下仍需要人工二次修正,但在简单、重复性的代码生成上,将帮助开发者提升工作效率,并给IDE(集成开发环境)行业带来重大影响。
随着内容创造的爆发式增长,如何做到内容在质量和语义上的可控,成为可控式生成,将是生成式AI面临的主要挑战。在产业化方面,降成本仍是关键挑战。只有像ChatGPT这样的大模型训练成本和推理成本足够低,才有可能规模化推广。此外,数据的安全可控、创作版权和信任问题也需要随着产业化加快逐一解决。
未来三年,生成式AI将步入技术产品化的快车道,在商业模式上会有更多探索,产业生态也会随着应用的普及逐步完善。届时,生成式AI的内容创造能力将达到人类水平。拥有数据、计算能力、产品化经验的大型科技公司将成为生成式AI落地的主要参与者。基于生成模型的计算基础设施和平台会逐步发展起来,模型变成随手可得的服务,客户不需要部署和运行生成式模型的专业技能就可以使用。生成模型将在交互能力、安全可信、认知智能上取得显著进展,以辅助人类完成各类创造性工作。
趋势解读二:多模态预训练大模型
基于深度学习的多模态预训练是认知智能快速发展的重要推动力。构建多场景、多任务的预训练大模型将加速模型标准化进程,为人工智能模型成为基础设施创造条件。深度学习模型的不断完善、互联网海量真实数据的积累和生成式预训练的广泛应用,使得人工智能模型在自然语言理解、语音处理、计算机视觉等领域地交叉应用取得显著进展。
2022年,技术上的突出进展来自于BEiT-3多模态基础模型,该模型在视觉-语言任务处理上具备出色表现,包括视觉问答、图片描述生成和跨模态检索等。BEiT-3通过统一的模型框架和骨干网络(backbone)建模,能够更加轻松地完成多模态编码和处理不同的下游任务。另一方面,CLIP(ContrastiveLanguage-ImagePre-training)的广泛应用也促进了多模态模型的技术发展。CLIP作为基于对比学习的预训练模型,负责从文本特征映射到图像特征,能够指导GAN或扩散模型(Diffusion Model)生成图像。在文生图领域,Stable Diffusion也使用了CLIP,它能够通过文本提示调整模型,并借助扩散模型改善图像质量。与此同时,开源极大的促进了多模态的融合和预训练模型的发展。通过开源来降低模型使用门槛,将大模型从一种新兴的AI技术转变为稳健的基础设施,已成为许多大模型开发者的共识。
多模态预训练模型的发展将重塑人工智能商业模式,并为人们的生产生活方式带来积极影响。对个人而言,类似CLIP的多模态模型,将使更多非技术出身的人能够表达自己的创造力,无需再借助工具和编程专业能力。对企业来说,多模态预训练模型将成为企业生产效率提升的关键。商业模式上,具备大数据、算力资源和模型开发能力的科技企业,将会成为模型服务的提供方,帮助企业将基础模型的能力与生产流程融合起来,实现效率和成本最优。
认知智能的发展,不会局限在文本或图像等单一的模态上。未来,如何针对不同模态建立更高效的模型架构和统一的骨干网络,使得大模型能够广泛地支持各种下游任务将成为主要挑战。在此基础上,更多的挑战来自于挖掘不同模态(如图像-文本,文本-自然语言,视频-文本)数据间的相关信息,并巧妙的设计预训练任务,让模型更好的捕捉不同模态信息之间的关联。
语音、视觉和多模态预训练模型将加速人工智能向通用基础模型方向演进。在这个演进过程中,深度学习与强化学习相互促进发展,融合大量行业知识,模型将具备在不断变化的环境中快速适应的灵活性。建立统一的、跨场景、多任务的多模态基础模型会成为人工智能发展的主流趋势之一。随着技术的不断成熟,大模型在开发成本、易用性、开发周期、性能上会更具优势,给产品化和商业化带来更多可能性。
下载地址:https://t.zsxq.com/0aDmQsX59
学习资料见知识星球。
以上就是今天要分享的技巧,你学会了吗?若有什么问题,欢迎在下方留言。
快来试试吧,小琥 my21ke007。获取 1000个免费 Excel模板福利!
更多技巧, www.excelbook.cn
欢迎 加入 零售创新 知识星球,知识星球主要以数据分析、报告分享、数据工具讨论为主;
1、价值上万元的专业的PPT报告模板。
2、专业案例分析和解读笔记。
3、实用的Excel、Word、PPT技巧。
4、VIP讨论群,共享资源。
5、优惠的会员商品。
6、一次付费只需99元,即可下载本站文章涉及的文件和软件。
共有 0 条评论